PROGRAMME DE COLLES DE CHIMIE PC*2

SEMAINE N°6: 11 AU 17 NOVEMBRE

CHAPITRE 8: DIAGRAMMES BINAIRES LIQUIDE-VAPEUR

- I. Rappels sur le corps pur
- II. Généralités sur les diagrammes binaires
 - II.1 Mélange binaire
 - II.2 Paramètres intensifs de description du système
 - II.3 Représentations graphiques : diagrammes binaires
 - II.4 Nature des phases rencontrées
- III. Miscibilité totale à l'état liquide
- → Équations théoriques des courbes rosée/ébullition pour un mélange idéal :hors-programme
 - III.1 Variance
 - III.2 Établissement expérimental d'un diagramme binaire
 - III.2.1 Courbes d'analyse thermique
- \rightarrow Expression théorique des courbes d'analyse thermique (dépendance avec la capacité thermique du système) : hors programme
 - III.2.2 Construction du diagramme binaire liquide-vapeur eau-méthanol
 - III.3 Utilisation du diagramme
 - III.3.1 Interprétation du diagramme
 - III.3.2 Règle de l'horizontale
 - III.3.3 Théorème des moments chimiques
 - III.3.4 Étude de la vaporisation d'un mélange binaire liquide
 - III.4 Allure des diagrammes notion d'homoazéotropie
 - III.4.1 Mélanges idéaux et mélanges réels
 - III.4.2 Allure des diagrammes isobares
 - III.4.3 Propriétés de l'homoazéotrope (ou azéotrope)
 - III.5 Application à la distillation
- IV. Immiscibilité totale à l'état liquide
 - IV.1 Hétéroazéotropie
- → Équations théoriques des courbes de rosée : hors programme mais exercice sympa
 - IV.1.1 Calculs de variance
 - IV.1.2 Coordonnées de l'hétéroazéotrope à partir des pressions de vapeur saturante
 - IV.2 Diagramme
 - IV.3 Courbes d'analyse thermique
 - IV.4 Application à l'hydrodistillation
 - IV.4.1 Montage d'entrainement à la vapeur
 - IV.4.2 Montage d'hydrodistillation
 - IV.4.3 Montage de Dean-Stark
- V. Miscibilité partielle à l'état liquide
- PARTIE II: CONSTITUTION DE LA MATIERE: MODELISATION QUANTIQUE ET REACTIVITE

CHAPITRE 1 : ORBITALES ATOMIQUES

- I. Préliminaires (pas de question de cours sur ce paragraphe)
 - I.1 Caractéristiques de l'atome

- I.2 Caractéristiques de la lumière : dualité onde/corpuscule
- I.3 Interaction lumière matière
- II. Description probabiliste de l'atome (pas de question de cours sur ce paragraphe)
 - II.1 Principes de la mécanique quantique
 - II.2 Densité de probabilité de présence de l'électron
 - II.3 Équation de Schrödinger (hors programme)
- III. Modèle quantique de l'atome d'hydrogène
 - III.1 Résultats quantiques pour l'atome d'hydrogène
 - III.2 Représentation des orbitales atomiques
- \rightarrow seule question de cours possible sur le paragraphe III.2 : « représentations conventionnelles des OA s, p »
 - III.3 Cas des hydrogénoïdes
- IV. Modèle quantique pour les atomes polyélectroniques
 - IV.1 Position du problème
 - IV.2 Approximation orbitalaire ou monoelectronique
 - IV.3 Résolution de l'équation de Schrödinger
 - IV.4 Configurations électroniques
 - IV.4.1 Spin
 - IV.4.2 Règles de remplissage
 - IV.4.3 Électrons de valence et électrons de cœur
 - IV.4.4 Configuration électronique des états excités
 - IV.4.5 Configuration électronique des ions
- V. Architecture du tableau périodique des éléments
 - V.1 Construction historique
 - V.2 Configuration électronique et tableau périodique des éléments
 - V.3 Ensemble d'éléments particuliers
- VI. Évolution de quelques propriétés dans la classification périodique des éléments
 - VI.1 Évolution du nombre quantique principal n et de la charge effective Z*
 - VI.2 Énergie des OA et électronégativité
 - VI.3 Rayon atomique et polarisabilité
 - VI.4 Bilan général

TRAVAUX PRATIQUES

Calorimétrie Distillation

Appareil de Dean-Stark

EXERCICES

Thermodynamique: chapitre 8

Structure de la matière : chapitre 1

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- → privilégier des exercices autour des configurations électroniques et du tableau périodique

Cristallographie (structure exigible en question de cours ou en exercice : cfc)

Révisions PCSI: structure de la matière (modèle de Lewis, méthode VSEPR, mésomérie)

→ Un exercice obligatoire sur un de ces thèmes